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ABSTRACT

Many moving mechanical assemblies (MMASs)
for space applications rely on a small, initial
charge of lubricant for the entire mission
lifetime, often in excess of five years. In many
cases, the premature failure of a lubricated
component can result in mission failure. If
lubricant could be re-supplied to the contact in-
situ, the life of the MMA could be extended. A
vacuum spiral orbit tribometer (SOT) was
modified to accept a device to supply re-
lubrication during testing. It was successfully
demonstrated that a liquid lubricant
(Pennzane®/Nye 2001A) could be evaporated
into a contact during operation, lowering the
friction coefficient and therefore extending the
life of the system.

INTRODUCTION

Many moving mechanical assemblies (MMAS)
for space mechanisms rely on liquid lubricants
to provide reliable, long-term performance. The
proper performance of the MMA is critical in
assuring a successful mission. Historically,
mission lifetimes were short and MMA duty
cycles were minimal. As mission lifetimes were
extended, other components, such as batteries
and computers, failed before lubricated
systems. However, improvements in these
ancillary systems over the last decade have left
the tribological systems of the MMAs as the
limiting factor in determining spacecraft
reliability [1].

Typically, MMAs are initially lubricated with a

small charge (mg) that is supposed to last the
entire mission lifetime, often in excess of five
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years. In many cases, the premature failure of a
lubricated component can result in mission
failure [2].

Tribological failure of MMAs occurs when the
lubricant degrades or evaporates and therefore
loses its ability to lubricate tribological contacts,
bearing balls contacting raceways, for example.
Since the MMA is still mechanically intact when
the lubricant degrades, if lubricant could be re-
supplied to the contact, the life of the MMA
could be extended. Zaretsky [3] reviews some
of the relubrication systems developed in the
past. For high-speed bearings, centrifugal oilers
[4], positive commandable lubricators [5] and
wick feed systems [6] have been studied.
Oozing flow lubricators [7] have also been
successful for high-speed systems.

Lubricant reservoirs provide another means of
lubricant re-supply, but they are bulky, add
complexity, and cannot be activated when
needed. Rather, they continuously supply
lubricant to the contact, often leading to an
excess of supplied lubricant. Porous retainers
that have been impregnated with lubricant are
also considered as a source [8].

On demand, in-situ lubrication provides a step
between having no additional lubricant and
large lubricant reservoirs. The in-situ lubrication
device (ISLD) is a small reservoir that can be
remotely activated to evaporate a minimal
charge of lubricant into the contact zone. A
sensor can be attached to the MMA to monitor
its health, bearing torque or motor current, for
example, and, when needed, activate the heater
on the ISLD.



The concept of introducing lubricant into an
operating contact was first introduced by Kato
et al. [9-12]. A system was developed in order
to combat the problem of solid coating wear.
The system deposited a solid film lubricant into
a contact zone during sliding (pin-on-disk)
through evaporation. As friction increased, the
system could be reactivated and a new coating
deposited, thus yielding a virtually limitless
lifetime. Termed ‘tribo-coating,’ this system
demonstrated the ability to re-lubricate a contact
in-situ.

Adachi et al. [10] attempted two types of in-situ
coating using the solid lubricant indium and a
pin-on-disk test device. The first was to deposit
a coating on the parts before running the test.
This was termed ‘vapor deposition.’ The second
was to deposit the coating while the system was
operating. This is called ‘tribo-coating.” It was
observed that tribo-coating had lower friction
and longer life than a vapor deposited coating.

The objective of this work was to test the
feasibility of using an in-situ evaporation system
with a liquid lubricant under ultra-high vacuum
and in a boundary lubricated, rolling contact.
Deposition on an unlubricated ball and re-
lubrication of a ball with an initial lubricant
charge was studied.

EXPERIMENTAL
TRIBOMETER

A vacuum spiral orbit tribometer (SOT) was
used for these experiments and is pictured in
Figure 1. The tribometer simulates a thrust
bearing. A single 12.7 mm diameter ball is
sandwiched between two flat plates that
simulate raceways. The lower plate is fixed
while the top plate is rotated. During rotation,
the ball moves in a spiral orbit that is directly
related to the friction coefficient. A third plate,
called the guide plate, is used to return the ball
to its original orbit diameter once per revolution.
The force the ball exerts on the guide plate is
measured and the friction coefficient can be
calculated. The tribometer is further described
in Reference 13 and its previous usages appear
in References 14 to 16.
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The contact resistance between the ball and
two plates is also measured. This is a good
indicator if a film or friction polymer is present.
During boundary lubrication or a non-lubricated
contact, the resistance is near zero. As a film or
friction polymer layer develops the resistance
increases. As this layer is worn away, the
resistance returns to zero.

The tests were performed under ultra-high
vacuum (<10 Pa). The ball, plates, and guide
plate were made from AISI 440C stainless steel,
a common material for bearings used in space
applications. The plates were polished to an
average surface roughness (R,) of 0.05 um.
The ball was grade 25.

LUBRICANT

The liquid lubricant used is an unformulated
synthetic  hydrocarbon  (multiply alkylated
cyclopentane). It is marketed as Pennzane®
(Nye 2001A). It is fully described in Reference
[17].

SAMPLE PREPARATION

The ball, disks, and guide plate were
sequentially cleaned for five minutes each in
ultrasonic baths of hexane, methanol, and
distilled water. They were then UV-Ozone
cleaned [18] for 15 minutes to remove residual
organic residue.

LUBRICANT APPLICATION

Accelerated testing is achieved by limiting the
amount of available lubricant. During the test,
the lubricant is continuously consumed and
eventually the lack of lubricant leads to an
increase in the friction coefficient. Failure is
defined as when the friction coefficient exceeds
some predetermined value, normally 0.28, and
the test is shutdown. In a standard test, the ball
is lubricated with approximately 50 ng before
the test begins. Only the ball is lubricated.

For the in-situ lubrication tests, the SOT was
modified (Figure 2) with a heater and collimator.
The heater cup contained a drop of liquid
Pennzane® (Nye 2001A). When the friction



began to rise above a steady state value, the
heater was turned on and lubricant evaporated.
The heater cup consumed 15 to 30 watts of
power during these evaporations. The collimator
allowed evaporant to reach only the wear track
on the rotating upper plate and prevented its
undesirable deposition elsewhere in the
chamber. Once the proper evaporation
temperature (~250°C) of the heater cup was
reached, the temperature was maintained until
the friction coefficient dropped below the
desired level.

TESTING

For the first test, the ball was unlubricated at the
onset of the test. The test was started at a low
mean Hertzian stress (0.9 GPa) and the in-situ
lubrication device (ISLD) was turned on. The
ISLD was left on until the friction dropped to the
value (0.08) that is seen with a normally
lubricated ball. The mean Hertzian contact
stress was then increased to 1.5 GPa. The test
was allowed to run until the friction coefficient
exceeded 0.15.

For the second test, the ball was also
unlubricated at the beginning of the test. The
same initial lubricant deposition as in test 1 was
performed. Once the proper friction coefficient
(0.08) was obtained, the mean Hertzian stress
was again increased to 1.5 GPa. The test was
allowed to run until the friction coefficient
exceeded 0.15. At this time, the ISLD was re-
activated and a second deposition took place
and the friction returned to 0.08. The test limit
was again set at 0.15, but was manually
shutdown since the coefficient of friction did not
exceed 0.15 during the test.

For the third trial, the ball was initially lubricated
with 40 pug as in a standard test. The test was
started with a mean Hertzian stress level of
1.5 GPa. When the friction exceeded 0.15, the
ISLD was turned on and re-deposited a
lubricant charge. This was repeated six times
and then the test was manually shutdown.

RESULTS
The friction trace and resistance profile for the

tests can been seen in Figures 3 to 8. Test 1
demonstrated that a liquid lubricant could
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successfully be deposited using an evaporation
technique. During this test, an initial friction
coefficient of ~0.08 was obtained. This
correlated well with previous SOT experiments
[2] where the ball was pre-lubricated. The slowly
increasing friction during the test also mimicked
that of a normal test. Normalized lifetimes
(orbits/ug) previously obtained by the SOT
could not be compared since the amount of
lubricant on the ball was unknown.

Test 2 successfully demonstrated that re-
lubrication of a contact that was beginning to fail
was possible.

Test 3 was the closest representation of a real
bearing application. During this test, the ball
was initially lubricated and run at full contact
stress. As the friction coefficient increased, the
ISLD was activated as needed to re-lubricate
the contact several times. Using this technique,
a lifetime far in excess of any previous test was
obtained.

DISCUSSION

Since it was not known how much Pennzane
would be evaporated, the length of time the
heater was on varied from deposition to
deposition. The time ranged from 15 sec to
1 minute. Also, the temperature control was
done manually. The target temperature for
evaporation was 225°C, but there was some
variance (+10°C). These two factors account for
the variability in lifetime between the various in-
situ deposited lubricant cycles.

As a precursor to failure, the electrical
resistance increased. This s especially
noticeable in Test 3. It is believed that the
resistance is an indication that a friction polymer
is forming as the Ilubricant degrades.
Examination of the disks after test conclusion
revealed that there was a substantial amount of
residue on the disks.

Lubricated mechanisms enable successful
operation of all spacecraft. These operations
include: - scanning, spectral selection, sensor
alignment, star and sun tracking, and attitude
control. Almost all of these mechanisms are
“lubricated for life” upon launch and are not
accessible once in space. The only exceptions



are low earth orbiting applications such as the
International Space Station and the Hubble
Space Telescope. These latter applications are
visited by the space shuttle and components
can usually be replaced via an extra vehicular
activity (EVA).

However, in most cases, a component bearing
failure will result in a degradation of function,
which may represent a single point failure. This,
in turn, can lead to mission failure. Vast
improvements in spacecraft design have now
exposed the lubricated components to be the
weak link in attaining mission objectives.

Normally, lubricated bearings in space do not
wear out in the classic sense, but rather
consume all available lubricant resulting in high
torques that eventually exceed the driving
mechanism’s  capability. Liquid lubricated
systems can survive for many years on an
astonishingly small amount of lubricant. For
example, Kingsbury [19] has shown that the
spin axis bearings in a large Control Moment
Gyroscope (CMG) could be effectively
lubricated with about 10 micrograms of lubricant
per hour.

A smaller bearing cartridge (101 size, full
complement) was operated for 440 days in
vacuum at 12,000 RPM. [20]. Only about 1/3 of
the original reservoir amount of lubricant was
consumed (about 2.3 grams). This represents
about 100 micrograms per hour. However,
calculations [21] have shown that only
0.2 micrograms per hour are needed for steady
state operation.

Of course, these calculations are for a
continuous flow into the bearing. For a
conventional small instrument bearing in a
space mechanism (such as the GOES filter
wheel) [22], an initial charge of 20 mg is added
at buildup. Additional lubricant is impregnated
into the porous retainer. However, it is unlikely
that any of the lubricant in the retainer is
available for use. In fact, porous retainers have
been shown to act as sponges rather than
suppliers of lubricant [23].

Assuming that this bearing would only require

0.2 micrograms per hour for nominal operation
and that all of this charge was available for use,
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20 mg would theoretically allow for over
10 years of operation. Of course, there are
other loss mechanisms in a bearing, including
evaporation and creep. Evaporation losses can
be estimated but creep losses cannot.

Therefore, small additions of lubricant “on
demand” could effectively prolong bearing life
indefinitely. This has been demonstrated in the
current work.

Of course, lubricant evaporations will require an
expenditure of energy that is usually in short
supply in space mechanisms. Thus, every effort
will have to be made to minimize the energy
required by the heater during evaporation.
Although no effort was made with the present
apparatus to minimize energy consumption,
miniaturization of the heater and its integration
into a bearing housing should allow for
operation at much lower energy consumption
rates.

SUMMARY OF RESULTS

e An in-situ lubrication device for liquid
lubricants was successfully demonstrated.

e The ability of a liquid lubricant to re-lubricate
a contact that was approaching failure
(higher friction) was also demonstrated.

e A friction coefficient comparable to a
“normally” lubricated ball can be obtained
with an in-situ system.

CONCLUSION

In-situ liquid lubrication in vacuum is feasible
and should be incorporated in full-scale
bearings for long-lived space mechanisms.
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Figure 2 — SOT modified with in-situ lubrication device. Top plate rotated upwards for better view.
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